- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Rhoads, Bruce_L (2)
-
Cain, Molly_R (1)
-
Hixson, Jase_L (1)
-
Jones, C_Nathan (1)
-
Ward, Adam_S (1)
-
Yu, Mingjing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT By altering hydrological and geomorphological processes at watershed scales, humans have substantially influenced the movement of sediment on Earth's surface. Despite widespread recognition of human impacts on erosion and deposition, few studies have assessed the magnitude of change in watershed‐scale sediment fluxes before and after the implementation of industrial agriculture and how agricultural development has altered the spatial distribution of sediment fluxes throughout watersheds. This study uses a modeling approach to explore changes in sediment fluxes before and after agricultural development in the upper Sangamon River Basin—an agricultural watershed in the midwestern United States. Comparison of model predictions with river hydrological and sediment data and with information on soil erosion and floodplain sedimentation shows the model accurately captures contemporary fluxes of water and sediment. To assess human impact, native land‐cover conditions are used to estimate the magnitude and spatial distribution of sediment fluxes before the landscape was transformed by farming practices. Results suggest that sediment delivery from hillslopes to streams in this low relief watershed has increased 11‐fold and the sediment load in streams has increased eight‐fold since European settlement. Floodplain sedimentation has also increased dramatically, a finding consistent with recent estimates of post‐settlement alluvium accumulation rates. The proportion of sediment exported from the basin is now slightly greater than it was in the 1800s. Overall, the model results indicate that humans have greatly enhanced the movement and storage of sediment within the upper Sangamon River basin.more » « less
-
Cain, Molly_R; Hixson, Jase_L; Jones, C_Nathan; Rhoads, Bruce_L; Ward, Adam_S (, Hydrological Processes)ABSTRACT Floodplains along low‐gradient, meandering river systems contain diverse hydrogeomorphic features, ranging from isolated depressions to hydrologically‐connected channels. These ephemerally‐flooded features inundate prior to river water overtopping all banks, enhancing river‐floodplain connectivity during moderately high flow stages. Predicting when and where ecological functions occur in floodplains requires understanding the dynamic hydrologic processes of hydrogeomorphic features, including inundation and exchange. In this study, we examined storm event‐scale inundation and exchange dynamics along a lowland, meandering river system in central Illinois (USA). We monitored surface water presence/absence, surface water level, and groundwater level across floodplain hydrogeomorphic feature types (i.e., isolated depression, backwater channel, and flow‐through channel). Using these data, we evaluated inundation onset and recession characteristics, drivers of groundwater‐surface water interactions, and direction of hydrologic exchange with the river channel. Surface water presence/absence patterns suggested inundation onset timescales were primarily controlled by microtopography and recession timescales were correlated with floodplain elevation. Employing a novel hysteresis approach for characterising groundwater‐surface water interactions, we observed distinct patterns indicating differences in water sources across hydrogeomorphic units and event characteristics. Finally, differences in hydraulic head along floodplain channels revealed that channels with multiple inlets/outlets (i.e., flow‐through channels) conveyed down‐valley flow and channels with single inlets primarily functioned as sinks of river‐derived water to the floodplain with short source periods. These results highlight the heterogeneity of hydrologic processes that occur along lowland, meandering river‐floodplains, and more specifically, point to the important role hydrogeomorphic features play in controlling dynamic connectivity within the river corridor.more » « less
An official website of the United States government
